EJERCICIOS

INSTRUCCIONES: Para cada una de las siguientes **funciones algebraicas** calcula su derivada.

$$1. \quad y = \frac{3x+2}{2x+3}$$

$$2. \quad y = \left(\frac{x}{x+1}\right)^5$$

$$3. \quad y = \frac{\sqrt{x}}{2}$$

4.
$$f(x) = (2x^2)(\sqrt{-x+2})$$

5.
$$f(x) = \frac{x^2}{\sqrt{x^2 + 9}}$$

6.
$$y = \frac{x^4 + 6x^3 + 9x^2}{x^3 + 3x^2}$$

INSTRUCCIONES: Para cada una de las siguientes **funciones trigonométricas** calcula su derivada.

7.
$$y = sen x \cos x$$

8.
$$y = x^2 sen x + 2x cos x - 2 sen x$$

$$9. \quad y = sen^2(3x - 2)$$

10.
$$y = x \operatorname{sen} x$$

11.
$$y = \tan^2 x$$

$$12. \quad y = \frac{1}{4} \cot 8x$$

INSTRUCCIONES: Para cada una de las siguientes **funciones exponenciales** calcula su derivada.

$$13. \quad y = \frac{e^x}{x}$$

14.
$$f(x) = x^2 e^{3x}$$

$$15. \quad y = e^{\sqrt{x}}$$

$$16. y = e^{e^x}$$

$$17. y = e^{-x} \cos x$$

INSTRUCCIONES: Para cada una de las siguientes **funciones logaritmo** natural calcula su derivada.

$$18. y = \ln(e^x + 2)$$

$$19. \qquad f(x) = x \ln x$$

$$y = \ln(x+3)^2$$

21.
$$y = \ln^2(x+3)$$

22.
$$y = \ln \frac{x^4}{(3x-4)^2}$$

$$23. y = \ln(sen 3x)$$

$$24. y = (\ln x)^4$$

25. Calcula la tercera derivada de la función: y = x sen x

26. Calcula la segunda derivada de la función: $f(x) = 4 \tan 5x$

27. Calcula la segunda derivada de la función: y = sen(4x)

28. Calcula la segunda derivada de la función: $f(x) = \frac{-3}{x}$

29. Calcula la segunda derivada de la función: $y = \frac{x^4 + 6x^3 + 9x^2}{x^3 + 3x^2}$

TABLA DE COMPROBACIÓN

Número de pregunta	Respuesta correcta
1	$y' = \frac{5}{(2 x + 3)^2}$
2	$y' = \frac{5 x^4}{(x + 1)^6}$
3	$y' = \frac{1}{4\sqrt{x}}$
4	$f'(x) = \frac{-5x^2 + 8x}{\sqrt{-x + 2}}$
5	$f'(x) = \frac{x^3 + 18x}{\sqrt{(x^2 + 9)^3}}$
6	y'=1
7	$y' = -\sin^2 x + \cos^2 x$
8	$y'=x^2\cos x$
9	y' = 6 sen(3x - 2) cos(3x - 2)
10	$y' = x \cos + sen x$
11	$y' = 2 \tan x \sec^2 x$
12	$y' = -2\csc^2(8x)$
13	$y' = \frac{e^{x}(x-1)}{x^{2}}$
14	$y'=e^{3x}\left(3x^2+2x\right)$
15	$y' = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$
16	$y'=e^{\left(e^x+x\right)}$
17	$y' = -e^{-x} \left(sen \ x + \cos x \right)$
18	$y' = \frac{e^x}{e^x + 2}$
19	$f'(x) = 1 + \ln x$
20	$y' = \frac{2}{x+3}$
21	$y' = \frac{2\ln(x+3)}{x+3}$

Número de pregunta	Respuesta correcta	
22	$y' = \frac{4}{x} - \frac{6}{3x - 4}$	
23	$y'=3\cot 3x$	
24	$y' = \frac{4}{x} (\ln x)^3$	
25	$y''' = -x\cos x - 3senx$	
26	$y''=200\sec^2 5x tg 5x$	
27	y'' = -16sen4x	
28	$y'' = -\frac{6}{x^3}$	
29	y''=0	
Sugerencias		

Es importante que repases las reglas para derivar las diferentes funciones.

Centro Universitario UAEM Texcoco "Patria, Ciencia y Trabajo"

14.
$$\emptyset = \tan^{-1} \frac{a+r}{1-ar}$$

Sol:
$$\frac{d\emptyset}{dx} = \frac{1}{1+r^2}$$

Encontrar la $\frac{dy}{dx}$ por medio de la derivación implicita:

1.
$$x^2 + y^2 = 16$$

$$2. \quad \sqrt{x} + \sqrt{y} = 9$$

3.
$$x^3 - xy + y^2 = 4$$

4.
$$x^3y^3 - y = x$$

5.
$$sen x + 2cos 2y = 1$$

6.
$$senx = x(1 + tany)$$

7.
$$y = senxy$$

8.
$$xy = 4$$

9.
$$y^2 = \frac{y^2 - 1}{x^2 + 4}$$

10.
$$(x + y)^3 = x^3 + y^3$$

11.
$$(x^2 + 4)y = 8$$

$$12.(x^2 + y^2)^2 = 4x^2y^2$$

13.
$$(y-2)^2 = 4(x-3)$$

14.
$$tan y = x$$

$$15. \ x^3y + xy^3 = 10$$

$$16. \ x^2y^2 + 3xy = 10y$$

17.
$$x^2(x+2y) = y^2(2x-y)$$

Sol.
$$y' = -\frac{x}{y}$$

Sol.
$$y' = -\sqrt{\frac{y}{x}}$$

Sol.
$$y' = \left(\frac{y-3x^2}{2y-x}\right)$$

Sol.
$$y' = \left(\frac{1-3x^2y^3}{3x^3y^2-1}\right)$$

Sol.
$$y' = \frac{\cos x}{4 \sin 2y}$$

Sol.
$$y' = \frac{cosx - tany - 1}{xsec^2y}$$

Sol.
$$y' = \frac{y \cos xy}{1 - x \cos xy}$$

Sol.
$$y' = -\frac{y}{x}$$

sol.
$$y' = \frac{xy(y^2-1)}{(x^2+4)}$$

Sol.
$$y' = -\frac{y(2x+y)}{x(x+2y)}$$

Sol.
$$y' = -\frac{2xy}{x^2+4}$$

Sol.
$$y' = \frac{x}{y}$$

Sol.
$$y' = \frac{2}{v-2}$$

Sol.
$$y' = cos^2y$$

Sol.
$$y' = -\frac{y(3x^2+y^2)}{x(x^2+3y^2)}$$

Sol.
$$y' = -\frac{y(2xy+3)}{2x^2y+3x-10}$$

Sol.
$$y' = -\frac{3x^2 + 4xy - 2y^2}{2x^2 - 4xy + 3y^2}$$